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ABSTRACT 
Kink folds are distinguished by sharp hinges, straight 

limbs, and an asymmetry expressed by a short limb 

connecting two longer limbs. The folds are not truly 

flexural slip folds, because the slip between layers is 

highly localized; that is, just within kink bands. We use 

boundary element methods to develop multilayer models 

consisting of interface-slip in an elastic medium with 

possibly different cohesion and friction on interfaces of 

adjacent layers. We show that the properties of interfaces 

(i.e., cohesion and friction) and initial differential stress 

play important roles in finite forms of folds. We find a 

multilayer with certain cohesion stand-alone on its 

interfaces can produce kink bands under compression 

parallel to the interface but with friction only cannot. We 

find that the lower bound of stand-alone cohesion 

divided by Young’s modulus ranges from 10
-3

 to 10
-2

 and 

friction cannot produce kink bands if the ratio of the 

vertical initial remote stress to horizontal initial remote 

stress is small than 0.2 under the shortening of 36% with 

an incremental far-field strain of 0.02 for multilayer 

models of 16 interfaces. 

 

Keywords: kink folds, kink bands, coulomb 

criterion, multilayer, folding, buckling. 

1. INTRODUCTION 
Kink folds are distinguished by sharp hinges, 

straight limbs, and an asymmetry expressed by a short 

limb connecting two longer limbs [1]. The folds are not 

truly flexural slip folds, because the slip between layers 

is highly localized; that is, just within kink bands. The 

individual kink-bands range in size over at least five 

orders of magnitude from millimeter [2] to hectometer [3] 

and appear in numerous kinds of materials, such as 

organic crystals [4], card decks [5], rubber laminates [6], 

phyllites [7]. No matter what material kink bands may 

form within, its structure is always layered or fabric in 

terms of scale. Namely, they are anisotropic in 

mechanical sense. A few experimental works [e.g., 7] 

have solved much of mystery of kink bands. Theoretical 

works [e.g., 8; 9; 10; 11] gave insight into how the kink 

folds may form. The goal of the study is to apply the 

coulomb criterion to the interlayer properties and resolve 

the conditions in which the kink folds appear.  

 

2. Theories of multilayer buckling 
The concept of amplification factor is relevant in a 

general way to multilayer buckling. The theory of folding 

of initial perturbations in isolated layers or multilayers is 

quite mature [e.g., 12; 13; 14; 15; 16; 17; 18]. Of 

particular relevance to this paper are theoretical studies 

of the physical conditions of multilayer folding that lead 

to significant amplification of initially small 

perturbations. In linear, homogenous materials, the rate at 

which an initial perturbation is amplified is a function of 

the number of layers in the multilayer, N, the thickness of 

individual layers, h, and the wavelength, L, of the initial 

perturbation. The rate at which initial sinusoidal 

perturbations are amplified by buckling under horizontal 

compression was quantified by Biot [19] and Fletcher 

[15] as the “amplification factor”. The amplification 

factor is a scalar quantity that determines the rate at 

which the amplitude of an initially small perturbation 

grows with increased shortening of the medium [e.g., 17]  

Fig. 1 produced from the folding theory developed 

by Johnson and Pfaff [21] shows the amplification factor 

as a function of the wavelength of the perturbation 

normalized by the thickness of a single layer. The layers 

have viscosity equal to the surrounding media and free 

slip at layer contacts. The amplification factor is shown 

for multilayers with two, four, or ten layers. Fig. 1 

illustrates that the amplification factor (i.e., the rate at 

which the amplitude grows) increases with the number of 

layers in the multilayer. Also, for a given layer thickness 

and number of layers, there is a so-called dominant 

wavelength at which the amplification factor is largest 

and the fold grows the fastest (the peak of the curves). 

Thus, Fig. 1 demonstrates the rather intuitive result that 

very broad or very narrow initial perturbations, relative 

to the thickness of the layers, grow in amplitude more 

slowly than perturbations with a dominant wavelength, 

and perturbations in a multilayer with many thin layers 

grow in amplitude more quickly than in a multilayer of 

the same total thickness but composed of a few thick 

layers. Considering the purpose of the research, the initial 

perturbations and the ratio of thickness of single layer to 

wavelength are fixed for all the models. The initial 

perturbation is a sinusoidal shape with a ratio, 0.0006, of 

amplitude to wavelength.  The ratio, 0.02, of thickness 

of single layer to wavelength is arbitrarily picked.  
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Figure 1 (a) Plots of amplification factor for periodic 

folds in viscous layers as a function of wavelength, L, 

normalized by the thickness of a single layer, h. N 

indicates number of layers in multilayer. Layers slip 

freely at contacts. Layers and surrounding medium have 

same viscosity. The plots are produce by using the 

folding theory developed by Johnson and Pfaff [20]. (b) 

Illustration of a multilayer bounded above and below by 

semi-infinite media. The number of layers in the 

multilayer, N, is 6. 

 

3. BOUNDARY ELEMENT MODEL OF 

MULTIPLE-LAYER FOLDING 
We develop a boundary element model to investigate 

the formation of kink folds by buckling. The boundary 

element method (BEM) is different from the finite 

element method (FEM) in that the medium is discretized 

only at boundaries in the BEM whereas the entire 

medium is discretized in the FEM. 

3.1. Basic Formulation 
In layered sedimentary or foliated metamorphic 

rocks, mechanical interfaces between sedimentary and 

foliated layers may form because of differences in 

physical properties at the interfaces such as grain size 

and cementation. Soft layers interbedded with stiff layers 

may localize shear, allowing the stiff layers to slide past 

each other. These conditions are important in folding 

because the bedding-plane slip can allow the strata to 

mechanically buckle with flexural slip. We model these 

conditions with multiple elastic layers with frictional 

contacts (Fig. 2). 

The basic geometry and boundary conditions of 

models are illustrated in Fig. 2.  We model mechanical 

layers with initially horizontal slip surfaces of finite 

length within an otherwise homogeneous elastic 

half-space. In general, the layers are assumed to slip 

according to a Coulomb friction law, |s|≤ C + n, 

where s is shear stress, C is cohesion,  is the coefficient 

of friction, and n is normal stress (compression is 

positive). The entire medium is subjected to increments 

of either uniform strain. If the shear stress on layers 

exceeds the strength as defined by the Coulomb friction 

law during each increment of far-field strain the 

interfaces slip in order to reduce the shear stress to the 

strength.  

 
Figure 2 Geometry and boundary conditions of 

multilayer model in an elastic medium with mechanical 

layering. Notation is : stress, n: normal traction, s: 

shear traction, and 
ff: remote strain.  Wiggly edges 

indicate that the medium extends to infinity. 

 

The numerical technique of the boundary element 

method has been clearly described by Crouch and 

Starfield [21]. Our boundary element algorithm is largely 

similar to their two-dimensional displacement 

discontinuity method (TWODD) which was succinctly 

summarized by Martel and Muller [22]. We formulate the 

elastic boundary element models using the solution for 

an edge dislocation in an isotropic, homogeneous, elastic 

half-space assuming infinitely long faults and bedding 

contacts in the strike direction (2D plane-strain 

conditions). 

We give a brief outline of our formulation of the 

boundary element model. Assume we have a N× 1 vector 

of incremental values of the dip component of slip, s, on 

N patches. From the solution for a 2D edge dislocation, 

we can relate the vector of shear stresses, s, and normal 

stresses, n, at the center of each patch to slip on all the 

patches through the N× N matrixes, Gs, and Gn, 

respectively, 

  sG ss    ; 

sG nn   . (1) 

We assume a coordinate system with x in the 

horizontal direction and y in the vertical direction. We 

apply increments of far-field uniform strain,  
ffxx = constant, 

ff
yy

   1/xx

ff

,
   

ffxy = 0,   (2)
 

                                                                               
 

with corresponding uniform far-field stress, 

0xy

ff

yy

ff   , 
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 yy

ff

xx

ff

xx

ffff 2  xx , (3)                   

where  and  are Lame’s elastic constants,

  21/2  , and  is Poisson’s ratio. We 

normalize all stresses by and assume  = 0.25. From 

the far-field stress we compute the shear component of 

stress resolved onto each patch, s

ff  . We satisfy the 

condition that the shear stress is smaller than or equal to 

C + n on each patch after each increment of 

deformation, 

ns

ff CsG    . (4)                                             

The distribution of incremental slip, s, on the 

patches is attained based on this condition                                               

N× N matrices xGd and yGd relating the x and y 

components of displacements of the endpoints of the 

patches to the slip on each patch is constructed using the 

solution for the edge dislocation. Note that we only 

specify one boundary condition and solve for only one 

slip component on each patch because we assume that 

the normal component of displacement discontinuity 

across patches is zero. Then the incremental 

displacements, xu and yu , of the patch endpoints 

during the small increment of deformation are calculated 

as 

xx usGu  ff

dx , 

yy usGu  ff

dy , (5) 

with the contribution to the displacements from the 

far-field strain being 

xx

ffff xux  , 

yy

ffff yu y  ,  (6) 

Positions of new patch endpoints are calculated from 

the previous endpoints and the incremental displacements, 

and then a new increment of far-field strain is applied 

and the calculations in equations (1)-(6) are repeated.  

It is important to recognize that we have adopted the 

linear (infinitesimal strain) elastic solution for an edge 

dislocation, yet we do not restrict our analysis to small 

strains. We assume that each increment of deformation 

can be modeled with the small strain theory, ignoring 

nonlinear effects due to the initial stress condition at the 

beginning of each increment. This is equivalent to 

assuming that the elastic stresses in the medium 

surrounding the faults and layer interfaces are somehow 

relaxed before the beginning of the next deformation 

increment. Inelastic processes for relaxing stresses 

include: micro-cracking [e.g. 23], grain boundary sliding 

[e.g. 24], twinning [e.g. 25], pressure solution [e.g. 26], 

recrystallization, and so on [e.g. 27].  Because we do 

not account for these processes in our model, results from 

this analysis must be viewed with mindfulness of the 

assumptions. Furthermore, we assume an incremental 

far-field strain of 
ffxx = -0.02 in all the applications in 

this paper which is about an order of magnitude larger 

strain than permissible by linear elasticity theory. 

However, we examine the effect of the incremental 

far-field strain with a range of magnitudes between 0.005 

and 0.2 on the final fold form. We find that the 

increments of deformation equal to or smaller than 0.02 

do not produce an appreciable difference in the final fold 

form indicating that our choice of incremental far-field 

strain is not a severe limitation. Fig. 3 shows the 

amplification increases with the amount of interfaces 

under the shortening of 35.9% and others. From rock 

experiments [7], rock samples are commonly smashed 

under the shortening of larger than 40%. Therefore, for 

simplicity and efficiency, we adopt 16 interfaces and 

applied shortening of for all the models hereafter.   

 
Figure 3 Growth of fold amplitude vs. number of 

interfaces under different shortenings  

 

3.2. Effects of Parameters 
There are three main parameters: friction angle and 

cohesion of interlayer property, and initial remote vertical 

stress in our models. The effects of these parameters are 

examined as follows. The models in Fig. 4 are frictional 

( ≠ 0) but cohesionless (C = 0) for the interfaces 

without remote vertical stress, i.e. yy

ff = 0. It shows 

frictional resistance has the potential to from kink folds. 

The models in Fig. 5 are cohesive (C ≠  0), but 

frictionless (= 0) for the interfaces without remote 

vertical stress. It shows cohesion alone can produce kink 

folds. The yy

ff  alone for frictionless and cohesionless 

layers has no effect on the fold form. However, a 

combined effect of and yy

ff  is seemingly able to 

from kink folds shown in Fig. 6. 

 

 
Figure 4 Model results for different frictions, (i.e. 

tanφ) but cohesionless (C = 0) for the interfaces without 

remote vertical stress, i.e. yy

ff = 0. 
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Figure 5 Model results for different cohesions but 

frictionless ( = 0) for the interfaces  

 

 
Figure 6 Model results for different normalized 

initial remote vertical stress, R


( equal to yy

ff /

xx

ff )with a friction angle, φ , of 10 °  but 

cohesionless (C = 0) for the interfaces  

 

4. SIMULATION RESULTS  
Broad ranges of values for the three main parameters 

are examined on exploring the conditions under which 

kink folds may from.  Two different loadings in view of 

its direction to the orientation of initial interfaces are 

presented. When the direction of shortening is parallel to 

the trend of initial interfaces, symmetric box kink-folds 

may form. When the direction of shortening is inclined to 

the trend of initial interfaces with a small angle, 

asymmetric shear kink-bands may form. 

4.1. Symmetric box folds 
With no surprise, symmetric folds results from certain 

amount of shortening parallel to the orientation of initial 

interfaces, for example, in Fig 7. Figs. 7b and 7d show 

that the distribution of slip along the interface is localized 

within the kink bands while the kink folds form. Fig. 8 

shows that the fold forms change from sinusoidal to 

step-like with the increase of either (i.e. tanφ) or 

yy

ff  and both. The fig also indicates that a certain 

value of yy

ff  is needed to form a perfect kink fold; 

however, the need of friction can be lowed while the 

yy

ff  is relatively larger. The dashed lines in Figs 8 and 

9 are artificial boundaries for different folds. Fig. 9  

shows that the combined effect of C and results in a 

variety of  fold forms and the region of kink folds 

expends with the increase of the yy

ff . 

 
Figure 7 Model results and slip distributions along 

interface under different conditions. S, A0, L0 ,and E. no. 

denote slip, initial fold amplitude and wavelength, and 

element number, respectively. 

 

 
Figure 8 Sequential modeled folds under normalized 

initial remote vertical stress, R


, and friction angle, φ 
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Figure 9 Sequential modeled folds under normalized 

cohesion, C0 (that is, cohesion divided by Young’s 

modulus), and friction angle, φ. The dashed lines are 

boundaries for different fold forms and labeled with a 

specified value of R


. 

 
4.2. Asymmetric shear bands 

Asymmetric shear kink-bands appear more 

commonly than symmetric box kink-folds in nature. 

Previous studies have indicated that asymmetric 

kink-bands can result from the shortening inclined to 

trend of initial interface [e.g., 7]. The direction of 

shortening for all the models presented in this section is 

inclined to the trend of initial interfaces with an angle of 

one degree.   Fig. 10 shows how S-type sine-like folds 

gradually change to z-type kink bands with the increase 

of cohesion and their final distributions of slip along the 

interface. Fig shows larger and yy

ff  can result in 

kink bands and may result in complex folds as well.   

 
Figure 10 Model results for asymmetric folds and 

slip distributions along interface under different 

cohesions. The direction of shortening and the initial 

trend of interfaces intersect at an angle of 1 degree. S, A0, 

L0 ,and E. no. denote slip, initial fold amplitude and 

wavelength, and element number, respectively. 

  

 
Figure 11 Sequential modeled asymmetric folds  

under normalized initial remote vertical stress, R


, 

and friction angle, φ. The direction of shortening and 

the initial trend of interfaces intersect at an angle of 1 

degree. 

 

5. DISCUSSION and CONCLUSIONS 
The range of friction is largely between 0.6 and 0.85 

for different rocks [28]. Namely, the frictional angle 

ranges from 30° to 40°. The magnitude of cohesion for 

many different rocks and ores is 1 to 10×10
7
 Pa [29]. The 

magnitude of Young’s modulus for different rocks is 

roughly 10
10

 Pa [30]. Those values mostly refer to the 

intact rocks or, say, non-layered rocks. Therefore, for 

layered rocks, such as laminated shales or phyllites, the 

values for their interface properties shall be lower but not 

possibly higher. Thus, our analyses shall cover all 

possible ranges that the kink bands may form in rocks if 

our models are valid.  

In conclusion, the properties of interfaces (i.e., 

cohesion and friction) and initial differential stress play 

important roles in finite forms of folds. Multilayers with 

certain cohesion stand-alone on their interfaces can 

produce kink bands under compression parallel to the 

interface but with friction only cannot. The lower limit of 

the cohesion divided by Young’s modulus is 10
-3

 to 10
-2

.   

The ratio of the vertical remote stress to horizontal 

remote stress shall be larger than 0.2; otherwise, friction 

alone cannot produce kink bands. 
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